
InProceedings of the I99,_ National Conference on Artificial Intelligence. Madison, Wisconsin. 1098.

Managing Multiple Tasks in Complex, Dynamic Environments

Michael Freed

NASA Ames Research Center

mfreed@mail.arc.nasa.gov

Abstract

Sketchy planners are designed to achieve goals in
realistically complex, time-pressured,and uncertain task
environments. However, the ability to manage multiple,
potentially interacting tasks in such environments
requires extensions to the functionality these systems
typically provide. This paper identifies a number of
factors affecting how interacting tasks should be

prioritized,interrupted, and resumed, andthen describes
a sketchy planner called APEX that takes account of
these factorswhen managing multiple tasks.

Introduction

To perform effectively in many environments, an agent
must be able to manage multiple tasks in a complex, time-

presstn'ed, and partially uncertain world. For example, the
APEX agent architecture described below has been used to
simulate human air traffic controllers in a simulated

aerospace environment (Freed and Remington, 1997). Air
traffic control consists almost entirely of routine activity;

complexity arises largely from the need to manage
multiple tasks. For example, the task of guiding a plane to
landing at a destination airport typically involves issuing a
series of standard turn and descent authorizations to each

plane. Since such routines must be carried out over
minutes or tens of minutes, the task of handling any
individual plane must be periodically interrupted to handle
new arrivals or resume a previously interrupted plane-

handling task.

Plan execution systems (e.g. Georgoff and Lansky, 1988;

Firby, 1989; Cohen et al., 1989; Gat, 1992; Simmons,
1994; Hayes-Roth, 1995; Pell, et al., 1997), also called

sketchy planners, have been designed specifically to cope
with the time-pressure and uncertainty inherent in these
kinds of environments. This paper discusses a sketchy

planner called APEX which incorporates and builds on
multitask management capabilities found in previous

systems.

O 1998, American Association for Artificial Intelligence

(www.aaai.orR). All rights reserved.

Multitask Resource Conflicts

The problem of coordinating the execkltion of multiple
tasks differs from that of executing a single task because
tasks can interact. For example, two task interact benignly
when one reduces the execution time, likelihood of failure,

or risk of some undesirable side effect from the other.

Perhaps the most common interaction between routine
tasks results from competition for resources.

An agent's cognitive, perceptual, and motor resources are
typically limited in the sense that each can normally be
used for only one task at a time. For example, a task that

requires the gaze resource to examine a visual location
cannot be carried out at the same time as a task that

requires gaze to examine a different location. When
separate" tasks make incompatible demands for a resource,
a resource conflict between them exists. To manage

multiple tasks effectively, an agent must be able to detect
and resolve such conflicts.

To resolve a resource conflict, an agent needs to determine

the relative priority of competing tasks, assign control of
the resource to the winner, and decide what to do with the
loser. The latter issue differentiates strategies for resolving
the conflict. There are at least three basic strategies (cf.

(Schneider and Detweiler, 1988)).

Shedding: eliminate low importance tasks
Delaying/Interrupting: force temporal separation

between conflicting tasks
Circumventing: select methods for carrying out tasks

that use different resources

Shedding involves neglecting or explicitly foregoing a
task. This strategy is appropriate when demand for a
resource exceeds availability. For the class of resources
we are presently concerned with, those which become
blocked when assigned to a task but are not depleted by

use, demand is a function of task duration and task
temporal constraints. For example, a task can be
characterized as requiring the gaze resource for 15 seconds
and having a completion deadline 20 seconds hence.



In APEX, steps are assumed to be concurrently executable

unless otherwise specified. The waitfor clause is used to

indicate ordering constraints. The general form of a

waitfor clause is (wai_or <eventform>*) where

eventforms can be either a procedure step-identifier or any

parenthesized expression. Tasks created with waiffor
conditions start in a pending state and become enabled

only when all the events specified in the waitfor clause
have occurred. Thus, tasks created by steps sl and s2

begin enabled and may be carried out concurrently. Tasks

arising from the remaining steps begin in a pending state.

(procedure
(index (turn-on-headlights)

(step s l (clear-hand left-hand))
(step s2 (determine-loc headlight-ctl => ?loc)

(step s3 (grasp knob left-hand ?loc)

(waitfor ?sl ?s2))
(step s4 (pull knob left-hand 0.4) (waitfor ?s3))

(step s5 (ungrasp left-hand) (waltfor ?s4))

(step s6 (terminate) (waitfor ?s5)))

Figure 1 Example PDL procedure

Events arise primarily from two sources. First, perceptual

resources (e.g. vision) produce events such as

(color object-17 green) to represent new or updated
observations. Second, the sketcily planner produces events
in certain cases, such as when a task is interrupted or

following execution of an enabled terminate task (e.g.

step s6 above). A terminate task ends execution of a

specified task and generates an event of the form
(terminated <task> <outcome>); by default, <task> is the
terminate task's parent and <outcome> is 'success.' Since

termination events are often used as the basis of task

ordering, waiffor clauses can specify such events using the
task's step identifier as an abbreviation - for example,

(waitfor (terminated ?s4 success)) = (waitfor ?s4).

Detecting Conflicts

The problem of detecting conflicts can be considered in

two parts: (1) determining which tasks should be checked
for conflict and when; and (2) determining whether a

conflict exist between specified tasks. APEX handles the

former question by checking for conflict between task

pairs in two cases. First, when a task's non-resource

preconditions (waitfor conditions) become satisfied, it is
checked against ongoing tasks. If no conflict exists, its

state is set to ongoing and the task is executed. Second,
when a task has been delayed or interrupted to make

resources available to a higher priority task, it is given a

new opportunity to execute once the needed resource(s)
become available - i.e. when the currently controlling task

terminates or becomes suspended. The delayed task is

then checked for conflicts against all other pending tasks.

Determining whether two tasks conflict requires only

knowing which resources each requires. However, it is

important to distinguish between two senses in which a
task may require a resource. A task requires direct control

in order to elicit primitive actions from the resource. For

example, checking the fuel gauge in an automobile

requires direct control of gaze. Relatively long-lasting and
abstract tasks require indirect control, meaning that they

are likely to be decomposed into subtasks that need direct
control. For example, the task of driving an automobile

requires gaze in the sense that many of driving's
constituent subtasks involve directing visual attention.

Indirect control requirements are an important predictor of

direct task conflicts. For example, driving and visually

searching for a fallen object both require indirect control

over the gaze resource, making it likely that their

respective subtasks will conflict directly. Anticipated
conflicts of this sort should be resolved just like direct

conflicts - i.e. by shedding, delaying, or circumventing.

Resources requirements for a task are undetermined until a

procedure is selected to carry it out. For inshnce, the task
of searching for a fallen object will require gaze if

performed visually, or a hand resource if carried out by

grope-and-feel. PDL denotes resource requirements for a

procedure using the PROFILE clause. For instance, the
following clause should be added to the turn-on-headlights

procedure described above:

(profile (left-hand 8 10))

The general form of a profile clause is

(profile (<resource> <duration> <continuity>)*). The
<resource> parameter specifies a resource det-med in the

resource architecture - e.g. gaze, left-hand, memory-

retrieval; <duration> denotes how long the task is likely to

need the resource; and <continuity> specifies how long an

interrupting task has to be before it constitutes a significant

interruption. Tasks requiring the resource for an interval
less than the specified continuity requirement are not

considered significant in the sense that they do not create a
resource conflict and do not invoke interruption-handling

activities (as described further on).

For example, the task of driving a car should not be

interrupted in order to look for restaurant signs near the
side of the road, even though both tasks need to control

gaze. In contrast, the task of finding a good route on a



.7

In low workload, the situation is reversed. With enough

time to do all current tasks, importance may be irrelevant.

The agent must only ensure that deadlines associated with
each task are met. in these conditions, urgency should

dominate the computation of task priority. The tradeoff

between urgency and importance can be represented by the

following equation:

prioritYb = S*lb + (S.,=-S)Ub

S is subjective workload (a heuristic approximation of

actual workload); [b and Ub represent importance and

urgency for a specified basis (b). To determine a task's

priority, APEX first computes a priority value for each
basis, and then selects the maximum of these values.

Interruption Issues

A task acquires control of a resource in either of two ways.

First, the resource becomes freely available when its
current controller terminates. In this case, all tasks whose

execution awaits control of the freed up resource are given

current priority values; control is assigned to whichever

task has the highest priority. Second, a higher priority task
can seize a resource from its current controller,

interrupting it and forcing it into a suspended state.

A suspended task recovers control of needed resources
when it once again becomes the highest priority competitor

for those resources. In this respect, such tasks are

equivalent to pending tasks which have not yet begun.
However, a suspended task may have ongoing subtasks

which may be affected by the interruption. Two effects
occur automatically: (l) submsks no longer inherit priority

from the suspended ancestor and (2) each subtask is

reprioritized, possibly causing it to become interrupted.
Other effects are procedure-specific and must be specified

explicitly. PDL includes several primitives steps useful for

this purpose, including RESET and TERMINATE.

(step s4 (turn-on-headlights))
(step s5 (reset) (waitfor (suspended ?st))

For example, step s5 causes a turn-on-headlight task to
terminate and restart if it ever becomes suspended. This

behavior makes sense because interrupting the task is

likely to undo progress made towards successful

completion. For example, the driver may have gotten as
far as moving the left hand towards the control knob at the

time of suspension, after which the hand will likely be

moved to some other location before the task is resumed.

Robustness against interruption

Discussions of planning and plan execution often consider
the need to make tasks robust against failure. For example,

the task of starting an automobile ignition might fail. A

robust procedure for this task would incorporate

knowledge that, in certain situations, repeating the turn-

key step is a useful response following initial failure. The

possibility that a task might be interrupted raises issues
similar to those associated with task failure, and similarly

requires specialized knowledge to make a task robust. The

problem of coping with interruption can be divided into

three parts: wind-down activities to be carried out as

interruption occurs, suspension-time activities, and wind-

up activities that take place when a task resumes.

It is not always safe or desirable to immediately transfer
control of a resource from its current controller to the task

that caused the interruption. For example, a task to read

information off a map competes for resources with and

may interrupt a driving task. To avoid a likely accident

following abrupt interruption of the driving task, the agent
should carry out a wind-down procedure (Gat, 1992) that

includes steps to, e.g., pull over to the side of the road.

The following step within the driving procedure achieves

this behavior.

(step sl 5 (pull-ove0

(waitfor (suspended ?self))

(priority (avoid-accident) (importance 10)

(urgency 10)))

Procedures may prescribe additional wind-down behaviors

meant to (1) facilitate timely, cheap, and successful

resumption, and (2) stabilize task preconditions and

progress - i.e. make it more likely that portions of the task
that have already been accomplished will remain in their
current state until the task is resumed. All such actions can

be made to trigger at suspension-time using the waltfor

eventform (suspended ?sell).

In some cases, suspending one task should enable others

meant to be carried out during the interruption interval.

Typically, these will be either monitoring and maintenance
tasks meant, like wind-down tasks, to insure timely

resumption and maintain the stability of the suspended task

preconditions and progress. Windup activities are carried
out before a task regains control of resources and are used

primarily to facilitate resuming after interruption.

Typically, windup procedures will include steps for
assessing and "repairing" the situation at resume-time -

especially including progress reversals and violated

preconditions. For example, a windup activity following a
driving interruption and subsequent pull-over behavior



Otherprospectiverefinementsto currentmechanisms

include allowing a basis to be suppressed if its associated
factor is irrelevant in the current context, and allowing

prioritization decisions to be made between compatible

task groups rather than between pairs of tasks. The latter

ability is important because the relative priority of two
tasks is not always sufficient to determine which should be

executed. For example: tasks A and B compete for
resource X while A and C compete for Y. Since A blocks

both B and C, their combined priority should be

considered in deciding whether to give resourcesto A.

Perhaps the greatest challenge in extending the present

approach will be to incorporate deliberative mechanisms

neededto optimize multitasking performance and handle

complex task interactions. The current approach manages

multiple tasks using a heuristic method that, consistent

with the sketchy planning framework in which it is

embedded, assumes that little time will be available to

reason carefully about task schedules. Deliberative

mechanisms would complement this approach by allowing

the agent to manage tasks more effectively when more
time is available.

Acknowledgements

Thanks to Jim Johnston, Roger Remington, and Michael

Shaffo for their interest and support, and to Barney Fell for

comments on a previous char of this paper.

References

Cohen, P.R., Greenberg, M.L., Hart, D., and Howe, A.E.
1989. An Introduction to Phoenix, the EKSL Fire-Fighting

System. EKSL Technical Report,. Department of

Computer and Informational Science. University of

Massachusetts, Amherst.

Firby, RJ. 1989. Adaptive Execution in Complex

Dynamic worlds. Ph.D. thesis, Yale University.

Freed, M. & Remington, R.W. 1997. Managing Decision

Resources in Plan Execution. In Proceedings of the

Fifteenth Joint Conference on Artificial Intelligence,

Nagoya, Japan.

Freed, M. 1998. Simulating human performance in

complex, dynamic environments. Ph.D. thesis,

Northwestern University.

Gat. Erann. 1992. Integrating planning and reacting in

heterogeneous asynchronous architecture for controlling
real-world mobile robots. In Proceedings of 1992

National Conference on Artificial Intelligence.

Georgeff, M and Lansky, A. 1987. Reactive Resoning and

Planning: An Experiment with a Mobile Robot.

Proceedings of 1987 National Conference on Artificial

Intelligence.

Hayes-Roth, B. 1995. An architecture for adaptive

intelligent systems. Artificial Intelligence, 72, 329-365.

Fell, B., Bernard, D.E., Chien, S.A.., Gat, E., Muscettola,

N., Nayak, P.P., Wagner, M., and Williuams, B.C. 1997.

An autonomous agent spacecraft prototype. Proceedings

of the First International Conference on Autonomous

Agents, ACM Press.

Schneider, W. and Detweiler, M. 1988. The Role of

Practice in Dual-Task Performance: Toward Workload

Modeling in a Connectionist/Control Architecture. Human

Factors, 30(5): 539-566.

Simmons, R. 1994. Structured control for autonomous
robots. 1EEE Transactions on Robotics and Automation.

io(i).


